

 1

Automation and Customization of Rendered Web Pages

Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller
MIT CSAIL
32 Vassar St

Cambridge, MA 02139 USA
{mbolin,wmatthew,prha,tom_w,rcm}@mit.edu

ABSTRACT
On the desktop, an application can expect to control its user
interface down to the last pixel, but on the World Wide
Web, a content provider has no control over how the client
will view the page, once delivered to the browser. This cre-
ates an opportunity for end-users who want to automate and
customize their web experiences, but the growing complex-
ity of web pages and standards prevents most users from
realizing this opportunity. We describe Chickenfoot, a pro-
gramming system embedded in the Firefox web browser,
which enables end-users to automate, customize, and inte-
grate web applications without examining their source code.
One way Chickenfoot addresses this goal is a novel tech-
nique for identifying page components by keyword pattern
matching. We motivate this technique by studying how
users name web page components, and present a heuristic
keyword matching algorithm that identifies the desired
component from the user’s name.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces;
D.3.3 [Programming Languages]: Language Constructs and
Features; D.2.6 [Programming Environments]: Interactive
environments; H.5.2 [User Interfaces]: User-centered de-
sign.

General terms: Design, Algorithms, Experimentation,
Human Factors, Languages.

Keywords: Web automation, web browsers.

INTRODUCTION
The World Wide Web has become a preferred platform for
many kinds of application development. Over the past dec-
ade, applications which formerly would have been designed
for the desktop — calendars, travel reservation systems,
purchasing systems, library card catalogs, map viewers,
crossword puzzles, and even Tetris — have made the tran-
sition to the Web, largely successfully.

The migration of applications to the Web opens up new
opportunities for user interface customization. Applications

that would have been uncustomizable on the desktop sprout
numerous hooks for customization when implemented in a
web browser, without any effort on the application devel-
oper’s part. Displays are represented primarily by machine-
readable HTML or XML, navigation and commands are
invoked by generic HTTP requests, and page designs can
be tailored by stylesheets. Here are some of the customiza-
tion possibilities that arise when an application is moved to
the Web:

Automating repetitive operations. Web automation may
include navigating pages, filling in forms, and clicking on
links. For example, many conferences now use a web site to
receive papers, distribute them to reviewers, and collect the
reviews. A reviewer assigned 10 papers to read and review
repetitive web browsing to download each paper, print it,
and (later) upload a review for it. Tedious repetition is a
good argument for automation. Other examples include
submitting multiple queries and comparing the results, and
collecting multiple pages of search results into a single page
for easy printing or additional sorting and filtering.

Integrating multiple web sites. The simplest kind of inte-
gration is just adding links from one site to another �[9], but
much richer integration is possible. For example, many re-
tailers’ web sites incorporate maps and directions provided
by a mapping service directly into their web pages, to dis-
play their store locations and provide driving directions.
But end users have no control over this kind of integration.
For example, before buying a book from an online book-
store, a user may want to know whether it is available in the
local library, a question that can be answered by submitting
a query to the library’s online catalog interface. Yet the
online bookstore is unlikely to provide this kind of integra-
tion, not only because it may lose sales, but because the
choice of library is inherently local and personalized to the
user.

Transforming a web site's appearance. Examples of this
kind of customization include changing defaults for form
fields, filtering or rearranging web page content, and chang-
ing fonts, colors, or element sizes. Web sites that use Cas-
cading Style Sheets (CSS) have the potential to give the end
user substantial control over how the site is displayed, since
the user can override the presentation with personal
stylesheet rules. With the exception of font preferences,
however, current web browsers do not expose this capabil-
ity in any usable way.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
UIST’05, October 23–27, 2005, Seattle, Washington, USA.
Copyright ACM 1-59593-023-X/05/0010...$5.00.

 2

These examples involve not only automating web user in-
terfaces (clicking links, filling in forms, and extracting data)
but also customizing them (changing appearance, rearrang-
ing components, and inserting or removing user interface
widgets or data). The openness and flexibility of the web
platform enables customizations that would not have been
possible on the desktop.

Existing approaches to web automation use a scripting lan-
guage that dwells outside the web browser, such as Perl,
Python, or WebL �[1]. For an end user, the distinction is
significant. Cookies, authentication, session identifiers,
plugins, user agents, client-side scripting, and proxies can
all conspire to make the Web look significantly different to
an agent running outside the web browser. Recent highly-
interactive web applications like Google Mail and Google
Maps — sometimes called AJAX applications �[13] because
they use asynchronous JavaScript and XML — have made
this situation worse.

But perhaps the most telling difference, and the most in-
timidating one to a user, is the simple fact that outside a
web browser, a web page is just raw HTML. Even the most
familiar web portal looks frighteningly complicated when
viewed as HTML source.

Chickenfoot is a new programming system we are develop-
ing that provides a platform for automating and customizing
web applications through a familiar interface – as web
pages rendered in a web browser. The challenge for Chick-
enfoot is simply stated: a user should never have to view the
HTML source of a web page in order to customize or
automate it.

Chickenfoot addresses this challenge in three ways. First, it
runs inside the web browser, so that the rendered view of a
web page is always visible alongside the Chickenfoot de-
velopment environment. Second, its language primitives are
concerned with the web page's user interface, rather than its
internal details. For example, Chickenfoot uses commands
like click, enter, and pick to interact with forms.
Third, it uses novel pattern-matching techniques to allow
users to describe components of a web page (targets for
interaction, extraction, insertion, or customization) in terms
that make sense for the rendered view. For example,
click identifies the button to be clicked using keywords
from its text label, rather than the name it was given by the
web page designer.

Chickenfoot is implemented as an extension for the Mozilla
Firefox web browser, written in Java, JavaScript, and XUL.
It consists of a development environment, which appears as
a sidebar of Firefox, and a library built on top of JavaScript.
Chickenfoot customizations are essentially JavaScript pro-
grams, so Chickenfoot currently does not support nonpro-
gramming users. We assume that a Chickenfoot developer
has some knowledge of JavaScript and HTML — not an
unreasonable assumption, since many power users showed
the ability and willingness to learn these during the explo-
sive growth of the Web. The problem Chickenfoot is ad-
dressing is not learning JavaScript and HTML syntax, but

rather reading and understanding the complex HTML used
by today’s web applications.

Naturally, many users would benefit from a web automation
system that avoids the need to learn programming language
syntax. We regard Chickenfoot as a step towards this goal,
but a crucial one, since it provides a level of expressiveness
and completeness unavailable in special-purpose web
automation systems.

One system similar to Chickenfoot in implementation is
Greasemonkey1, a Firefox extension that can run user-
written JavaScript on web pages just after they are loaded
in the browser. Though Greasemonkey enables mutation
and automation of web pages in the browser, it does not
address the need to inspect the HTML of the page. Platy-
pus2 is another Firefox extension, designed to work with
Greasemonkey, that allows some customization of rendered
web pages, but not automation or integration of multiple
web sites.

The rest of this paper is organized as follows. First we give
an overview of the Chickenfoot language and development
environment, and describe a range of applications we have
built using Chickenfoot. Then we delve deeper into a novel
aspect of Chickenfoot: the pattern matching used to identify
web page elements for automation or customization. We
describe a survey of web users that motivated the design of
the pattern matching, and present the algorithm we devel-
oped as a result. Finally we review related work and make
some conclusions.

CHICKENFOOT
Chickenfoot is an extension to the Mozilla Firefox web
browser, consisting of a library that extends the browser's
built-in JavaScript language with new commands for web
automation, and a development environment that allows
Chickenfoot programs to be entered and tested inside the
web browser. This section describes the essential Chicken-
foot commands, including pattern matching, form manipu-
lation, page navigation, and page modification. The section
concludes by describing the development environment
(Figure 1).

Language
Chickenfoot programs are written in JavaScript, using the
JavaScript 1.5 interpreter built into Mozilla Firefox. As a
result, Chickenfoot users have access to the full expressive-
ness of a high-level scripting language, with a prototype-
instance object system, lexically scoped procedures, dy-
namic typing, and a rich class library.

Because Chickenfoot uses JavaScript, web developers can
easily transfer their knowledge of JavaScript from web page
development over to Chickenfoot. Chickenfoot predefines
the same variables available to JavaScript in web pages –
e.g., window, document, location, frames, history –

1 http://greasemonkey.mozdev.org
2 http://platypus.mozdev.org

 3

so that JavaScript code written for inclusion inside a web
page can also be used as a Chickenfoot script outside the
web page. JavaScript has its own ways of visiting new
pages (location), manipulating form controls (docu-
ment.forms), and modifying page content (using the
Document Object Model, or DOM �[12]). These mecha-
nisms can be used by Chickenfoot scripts in addition to the
Chickenfoot commands described in the next few sections.
We have found that using the native JavaScript mechanisms
generally require reading and understanding a web page’s
HTML source. But by providing access to them, Chicken-
foot provides a smooth escape mechanism for script devel-
opers that need to do something more low-level.

All current web browsers, including Firefox, implement a
security model for JavaScript to protect web users from
malicious downloaded scripts. A major part of this security
model is the same-origin policy, which prevents JavaScript
code downloaded from one web server from manipulating a
web page downloaded from a different server. This restric-
tion is clearly too severe for Chickenfoot, since its primary
purpose is integrating and customizing multiple web sites.
As a result, Chickenfoot scripts run at a privileged level,
where they have access to the entire web browser, all pages
it visits, and the user’s filesystem and network. Users must
trust Chickenfoot code as much as they trust any other desk-
top application. As a result, Chickenfoot scripts cannot be
embedded in downloadable web pages like other
JavaScript. But Chickenfoot code can inject new behavior

into downloaded pages, which is explained in more detail
later.

Pattern Matching
Pattern matching is a fundamental operation in Chicken-
foot. To operate on a web page component, most com-
mands take a pattern describing that page component.

Chickenfoot supports two kinds of patterns: keyword pat-
terns and text constraint patterns. A keyword pattern con-
sists of a string of keywords that are searched in the page to
locate a page component, followed by the type of the com-
ponent to be found. For example, “Search form”
matches a form containing the keyword Search, and “Go
button” matches a button with the word “Go” in its label.
The component type is one of a small set of primitive
names, including link, button, textbox, checkbox,
radiobutton, and listbox. When a keyword pattern is
used by a form manipulation command, the type of page
component is implicit and can be omitted. For example,
click(“Go”) searches for a hyperlink or button with the
keyword “Go” in its label. Case is not significant, so
click(“go”) has the same effect.

A text constraint pattern combines a library of primitive
patterns (such as link, textbox, or paragraph), literal
strings (such as “Go”), and relational operators (e.g., in,
contains, just before, just after, starts, ends).
Text constraint patterns have been described in more detail
previously �[10]. Text constraint patterns are generally used

Figure 1. Chickenfoot development environment running inside the Firefox web browser.

 4

to identify parts of a page for modification and extraction,
although they can also be used for form manipulation.

The find command takes a pattern of either kind and
searches for it in the current page, e.g.:

find(“Search form”)
find(“link in bold”)

Find returns a Match object which represents the first
match to the pattern and provides access to the rest of the
matches. Here are some common idioms using find:

// test whether a pattern matches
if (find(pattern).hasMatch) { ... }

// count number of matches
find(pattern).count

// iterate through all matches
for (m=find(pattern);
 m.hasMatch;
 m = m.next) { ... }

A Match object represents a contiguous region of a web
page, so it also provides properties for extracting that re-
gion. If m is a Match object, then m.text returns the plain
text it represents, i.e., the text that would be obtained by
copying that region of the rendered web page and pasting it
to a text editor that ignored formatting. Similarly, m.html
returns the source HTML of the region, which is useful for
extracting the region with formatting intact. Finally,
m.element returns the DOM Element object represented
by the region, if the region contains a single outermost ele-
ment. This element can be used to get and set element
attributes, e.g.:

find(“link”).element.href

The find command is not only a global procedure, but also
a method of Match and Document. Invoking find on one
of these objects constrains it to return only matches within
the page or part of a page represented by the object. Here
are some common idioms:

// nested finds
for (t=find(“table”);
 t.hasMatch;
 t = t.next) {
 r = t.find(“row”);
 ...
}

// find in a page not currently showing
otherDocument.find(pattern)

Clicking and Form Manipulation
The next few commands allow Chickenfoot scripts to click
on hyperlinks and fill in and submit forms.

The click command takes a pattern describing a hyperlink
or button on the current page and causes the same effect as
if the user had clicked on it. For example, these commands
click on various parts of the Google home page:

click(“Advanced Search”) // a hyperlink
click(“I’m Feeling Lucky”) // a button

Keyword patterns do not need to exactly match the label of
the button or hyperlink, but they do need to be unambigu-

ous. Thus, click(“Lucky”) would suffice to match the
I’m Feeling Lucky button, but in this case,
click(“Search”) would be ambiguous between the
Google Search button and the Advanced Search link, and
hence would throw an exception. (Exact matches take
precedence over partial matches, however, so if there were
a single button labeled “Search”, then the click command
would succeed.) Buttons and links labeled by an image can
be matched by keywords mentioned in their ALT text, if
any. The keyword matching algorithm is described in more
detail later in this paper.

The click command can take a Match object instead of a
pattern, if the button or hyperlink to be clicked has already
been found. For example, to identify a button using a text
constraint pattern, the user might write this:

click(find(“button just after textbox”))

The enter command enters a value into a textbox. Like
click, it takes a keyword pattern to identify the textbox,
but in this case, the keywords are taken from the textbox’s
caption or other visible labels near the textbox. For exam-
ple, to interact with the Amazon login page, a script might
say:

enter(“e-mail address”, “rcm@mit.edu”)
enter(“password”, password)

When the page contains only one textbox, which is often
true for search forms, the keyword pattern can be omitted.
For example, this sequence does a search on Google:

enter(“uist 2005”)
click(“Google Search”)

Checkboxes and radio buttons are controlled by the check
and uncheck commands, which take a keyword pattern that
describes the checkbox:

check(“Yes, I have a password”)
uncheck(“Remember Me”)

Finally, the pick command makes a selection from a list-
box or drop-down box (which are both instantiations of the
HTML <select> element). The simplest form of pick
merely identifies the choice by a keyword pattern:

pick(“California”)

If only one choice in any listbox or drop-down on the page
matches the keywords (the common case), then that choice
is made. If the choice is not unique, pick can take two
keyword patterns, the first identifying a listbox or drop-
down by keywords from its caption, and the second identi-
fying the choice within the listbox:

pick(“State”, “California”)

Like find, all the clicking and form manipulation com-
mands are also methods of Match and Document, so that
the keyword search can be constrained to a particular part
of a page:

f = find(“Directions form”)
f.enter(“address”, “32 Vassar St”)
f.enter(“zip”, “02139”)
f.click(“Get Directions”)

 5

The form manipulation commands described so far permit
setting the value of a form widget, which is the most com-
mon case for web automation. To read the current value of
a widget, a script can use find to locate it, and then access
the value of its Element object in conventional JavaScript
fashion, e.g.:

find(“address textbox”).element.value

Chickenfoot also provides a reset command which resets
a form to its default values, though reset is rarely needed.

Navigation and Page Loading
In addition to loading pages by clicking on links and sub-
mitting forms, Chickenfoot scripts can jump directly to a
URL using the go command:

go(“http://www.google.com”)

If the string is not a valid URL, go automatically prefixes it
with “http://”.

Conventional browser navigation operations are also avail-
able as Chickenfoot commands: back, forward, and re-
load.

To retrieve a page without displaying it, the fetch com-
mand can be used. It returns a Document object represent-
ing the invisible page:

google = fetch(“www.google.com”)

The JavaScript with statement is convenient for perform-
ing a sequence of operations on an invisible page, by im-
plicitly setting the context for Chickenfoot pattern matching
and form manipulation:

with (fetch(“www.google.com”)) {
 enter(“syzygy”)
 click(“Google Search”)
 n = find(“number just after
about“).text
}

Pages retrieved by fetch, go, or click are loaded asyn-
chronously by the browser, while the Chickenfoot script
continues to run. Thus, a script can fire off several fetch
requests in parallel, without forcing each request to com-
plete before the next one starts. When a subsequent
Chickenfoot command needs to access the content of a
page, such as find, the command automatically blocks
until the page is fully loaded. The wait and ready
commands make this blocking available to programmatic
control. Both commands take a Document object or an
array of Documents as an argument. With no arguments,
the default is the current page. Wait blocks until at least
one of the specified pages is fully loaded, and returns that
page. Ready returns a loaded page only if it has already
completed, otherwise it immediately returns null.

Page Modification
Chickenfoot offers three primitive commands for changing
the content of web pages: insert, remove, and replace.

The insert command takes two arguments: a location on a
page and a fragment of web page content that should be
inserted at that location. In its simplest form, the location is

a text constraint pattern, and the web page content is simply
a string of HTML:

insert(“just before textbox”,
 “Search: ”)

The location can also be derived from a Match object, but
it must represent a single point in the page, not a range of
content. The before and after commands can be used to
reduce one of these objects to a point:

t = find(“textbox”)
insert(after(t), “Search: ”)

The page content to be inserted can also be a Match object,
allowing content to be extracted from another page and
inserted in this one:

map = mapquest.find(“image”)
insert(“just after Directions”, map)

The remove command removes page content identified by
its argument, which can be a text constraint pattern or
Match object. For example:

remove(“Sponsored Links cell”)

The replace command replaces one chunk of page con-
tent with another. It is often used to wrap page content
around an existing element:

keyword = find(“syzygy”)
replace(keyword, “”+keyword+“”)

Widgets
When a Chickenfoot script needs to present a user interface,
it can create links and buttons and insert them directly into
a web page. Hyperlinks are created by the Link construc-
tor, which takes a chunk of HTML to display inside the
hyperlink and an event handler to run when the link is
clicked:

new Link(“Show All”, showAll)

The event handler can be either a string of Chickenfoot
code (like the onclick attribute in HTML) or a JavaScript
Function object. Buttons are created similarly by the But-
ton constructor.

Other widgets can be created by inserting HTML, e.g.:
insert(..., “<input type=checkbox>”)

If an onclick attribute is included in this HTML element,
however, the code it contains will execute like conven-
tional, untrusted JavaScript code downloaded with the page.
Commands defined by Chickenfoot would be unavailable to
it. To add a Chickenfoot handler to a button created from
HTML, one can use the onClick command:

onClick(button, showAll)

Development Environment
Figure 1 shows a screenshot of the development environ-
ment presented by the current Chickenfoot prototype, which
appears as a sidebar in Firefox. At the top of the sidebar is
a text editor used to compose Chickenfoot code, which may
be merely a single expression or command to execute, or a
larger program with function and class definitions. This
simple interface goes a long way toward making the
JavaScript interpreter embedded in every web browser ac-

 6

cessible to the user. Previously, there were only two ways to
run JavaScript in a web browser: by embedding it in a web
page (generally impossible if the page is fetched from a
remote web site, since the user can't edit it), or by using a
javascript: URL, which requires the entire program to be
written on a single line. The Chickenfoot sidebar makes it
much easier for an end-user to write and run scripts.

The bottom of the sidebar has four tabbed panels. First, the
Output panel is an output window that displays error mes-
sages, output printed by the Chickenfoot output com-
mand, and the result of evaluating the Chickenfoot script
(i.e., the value of the last expression).

The Actions panel (not yet implemented) will display a
history of browsing actions performed by the user, con-
stantly updated as the user browses the web. This panel
will enable self-disclosure �[3], displaying the Chickenfoot
commands that would reproduce the user’s actions. A
manual browsing sequence can be used as the basis for a
script by selecting it in the Actions pane and copying it into
the script editor.

The Patterns panel displays an interface for developing text
constraint patterns, which allows the user to type in a pat-
tern and see what it matches in the current page. This pane
also displays the primitive patterns available in the text
constraints pattern library.

Finally, the Triggers panel allows a Chickenfoot script to be
installed into the browser for regular use. For manual invo-
cation, a script can be installed as a bookmark, which ap-
pears like any other bookmark in the Bookmarks menu and
toolbar. For automatic invocation, a script can be associated
with a trigger, which is a URL pattern such as
http://www.amazon.com/*. Whenever a page is
loaded, if its URL matches a trigger, then the associated
script executes automatically. If a page matches multiple
triggers, the associated scripts execute in the fixed order
given by the Triggers pane. The Triggers pane provides an
interface for adding and removing triggered scripts, tempo-
rarily disabling triggers, and viewing errors in automatically
triggered scripts.

APPLICATIONS
This section describes a few of the example scripts we have
created using Chickenfoot.

Adding File Type Icons to Links
When a hyperlink points at a resource other than a web
page (such as a PDF document, a ZIP archive, or a Word
document), it is often helpful for the link to be visually dis-
tinguished – first, because the user may be actively scan-
ning the page for one of these resources, and second, be-
cause they may want to avoid them while casually surfing.
Only a few web sites provide a visual cue to the file type of
a hyperlink. TargetAlert is a Firefox browser extension,
developed by the first author, that adds file type icons to
hyperlinks on any web site.

TargetAlert was originally written in 217 lines of JavaScript
and XUL. We rewrote it in 29 lines of Chickenfoot. The
essence of the script is the following loop:
for (l=find('link'); l.hasMatch; l=l.next)
{
 href = l.element.getAttribute('href')
 if (m = href.match(/\.(\w+)$/)) {
 extension = m[1]
 src = ‘moz-icon://.’ + extension
 + ‘?size=16’;
 insert(after(l),
 ' ‘)
 }
}

To simplify retrieving file type icons, the script exploits a
feature of Firefox that works only on Windows: URLs of
the form moz-icon://.ext?size=16 return the icon associated
with file extension .ext in the Windows registry. Firefox
normally uses these URLs to display local directories in the
browser. The result of running this script on part of a web
page is shown in Figure 2a.

Sorting Tables
Another feature that some web sites have, but many lack, is
the ability to sort a table of data by clicking one of its col-
umn headers. A Chickenfoot script can add this functional-
ity automatically to most tables, by replacing every table
header cell it finds with a link that sorts the table.

Most of the script is concerned with managing the sort, but
here is the part that replaces headers with links:

column=0
for (h=table.find(‘text in cell in first
row’); h.hasMatch; h=h.next) {
 var f = makeRowSorter(table,column++)
 replace(h, new Link(h, f))
}

The makeRowSorter function returns a function that sorts
the specified table by the specified column number.

Concatenating a Sequence of Pages
Search results and long articles are often split into multiple
web pages, mainly for faster downloading. This can inhibit
fluid browsing, however, because the entire content isn’t
accessible to scrolling or to the browser’s internal Find
command. Some articles offer a link to the complete con-
tent, intended for printing, but this page may lack other
useful navigation.

We have written a Chickenfoot script that detects a multi-
page sequence by searching for its table of contents (gener-
ally a set of numbered page links, with Next and Previous).

 (a) (b)

Figure 2. Chickenfoot examples: (a) file type
icons added to links, and (b) “Show All” link for
page concatenation.

 7

When a table of contents is found, the script automatically
adds a “Show All” link to it (Figure 2b). Clicking this link
causes the script to start retrieving additional pages from
the sequence, appending them to the current page. In order
to avoid repeating common elements from subsequent
pages (such as banners, sidebars, and other decoration), the
script uses a conservative heuristic to localize the content,
by searching for the smallest HTML element that contains
the list of page links (since the content is nearly always ad-
jacent to this list) and spans at least half the height of the
rendered page (since the content nearly always occupies the
majority of the page). The content element from each sub-
sequent page is inserted after the content element of the
current page.

Adjusting Contrast
An unfortunate number of web pages make poor color
choices, making the text hard to read even for users with
good eyesight – and all but impossible for users with re-
duced vision. A simple Chickenfoot script can reset all the
text colors to black and white for easier reading:

for (e=find('element contains text');
 e.hasMatch;
 e=e.next) {
 e.element.style.color = 'black';
 e.element.style.background = 'white';
 e.element.style.backgroundImage=‘none’;
}

Coloring Java Syntax and Linking to Documentation
The text constraint patterns used by Chickenfoot can draw
on the rich library of patterns and parsers implemented in
LAPIS �[10]. In the library is a Java parser, which is capa-
ble of finding and parsing Java syntax even if it is embed-
ded in a web page. One of our Chickenfoot scripts uses this
parser for coloring embedded Java syntax, e.g.:

for (c = find('Java.Comment');
 c.hasMatch;
 c = c.next) {
 replace(c, “”
 + c + “”)
}

The script also links each occurrence of a class name to its
Javadoc documentation:

for (c = find('Java.Type');
 c.hasMatch;
 c = c.next) {
 if (c.text in classURL) {
 replace(c, “<a href=’”
 + classURL[c.text] + “’>”
 + c.text + “”)
 }
}

The classURL array maps a class name (e.g. “String”) to
the URL of its documentation, which another part of the
script extracts from Sun's web site:

go(“java.sun.com/j2se/1.5.0/docs/api”)
click(“No Frames”)
click(“All Classes”)
for (l=find(‘link’);l.hasMatch;l=l.next){
 classURL[l.text] = l.element.href
}

This simple script ignores the problem of ambiguous class
names (java.util.List and java.awt.List) and only uses the
standard Java class library, but it would be straightforward
to extend it to deal with these problems.

Highlighting Vocabulary Words
Students studying for college placement exams, such as the
SAT, often work hard to expand their vocabulary. One way
to make this learning deeper is to highlight vocabulary
words while the student is reading, so that the context of
use reinforces the word’s meaning. One of our Chickenfoot
scripts takes a list of vocabulary words and definitions
(posted on the web) and automatically highlights matching
words in any page that the user browses. The script uses a
title attribute to pop up the word’s definition as a tooltip if
the mouse hovers over it:

for (w=find(‘word’);w.hasMatch;w=w.next){
 if (w.text in vocab) {
 html = '<span style="background-
color: yellow” title="'
 + vocab[w.text] + '">'
 + w + ''
 replace(word, html)
 }
}

Integrating a Bookstore and a Library
The last example is a short script that augments book pages
found in Amazon with a link that points to the book’s loca-
tion in the MIT library:

isbn = find('number just after isbn')
with (fetch('libraries.mit.edu')) {
 pick('Keywords’);
 enter(isbn)
 click('Search')
 link=find('link just after Location')
}
// back to Amazon
if (link.hasMatch) {
 insert(before('first rule after "Buying
Choices"'), link.html)
}

USER STUDY OF KEYWORD MATCHING
One of the novel aspects of Chickenfoot is the use of key-
word patterns to identify page elements, such as “Search
button” and “address textbox”. To explore the us-
ability of this technique, we conducted a small study to
learn what kinds of keyword patterns users would generate
for one kind of page component (textboxes), and whether

 (a) (b)

Figure 3. Chickenfoot examples: (a) highlight-
ing vocabulary words, and (b) integrating a link
to a library into a bookstore page.

 8

users could comprehend a keyword pattern by locating the
textbox it was meant to identify.

Method
The study was administered over the Web. It consisted of
three parts, always in the same sequence. Part 1 explored
freeform generation of names: given no constraints, what
names would users generate? Each task in Part 1 showed a
screenshot of a web page with one textbox highlighted in
red, and asked the user to supply a name that "uniquely
identified" the highlighted textbox. Users were explicitly
told that spaces in names were acceptable. Part 2 tested
comprehension of names that we generated from visible
labels. Each task in Part 2 presented a name and a screen-
shot of a web page, and asked the user to click on the text-
box identified by the given name. Part 3 repeated Part 1
(using fresh web pages), but also required the name to be
composed only of "words you see in the picture" or "num-
bers" (so that ambiguous names could be made unique by
counting, e.g. "2nd Month").

The whole study used 20 web pages: 6 pages in Part 1, 8 in
Part 2, and 6 in Part 3. The web pages were taken from
popular sites, such as the Wall Street Journal, the Weather
Channel, Google, AOL, MapQuest, and Amazon. Pages
were selected to reflect the diversity of textbox labeling
seen across the Web, including simple captions (Figure 4a),
wordy captions (b), captions displayed as default values for
the textbox (c), and missing captions (d). Several of the
pages also posed ambiguity problems, such as multiple
textboxes with similar or identical captions.

Subjects were unpaid volunteers recruited from the univer-
sity campus by mailing lists. Forty subjects participated (20
females, 20 males), including both programmers and non-
programmers (24 reported their programming experience as
"some" or "lots", 15 as "little" or "none", meaning at most
one programming class). All but one subject were experi-
enced web users, reporting that they used the Web at least
several times a week.

Results
We analyzed Part 1 by classifying each name generated by
a user into one of four categories: (1) visible if the name
used only words that were visible somewhere on the web
page (e.g., "User name" for Figure 4a); (2) semantic if at

least one word in the name was not found on the page, but
was semantically relevant to the domain (e.g., "login
name"); (3) layout if the name referred to the textbox's
position on the page rather than its semantics (e.g., "top box
right hand side"); and (4) example if the user used an ex-
ample of a possible value for the textbox (e.g.
"johnsmith056"). About a third of the names included
words describing the type of the page object, such as
"field", "box", "entry", and "selection"; we ignored these
when classifying a name.

Two users consistently used example names throughout
Part 1; no other users did. (It is possible these users misun-
derstood the directions, but since the study was conducted
anonymously over the Web, it was hard to ask them.) Simi-
larly, one user used layout names consistently in Part 1, and
no others did. The remaining 37 users generated either
visible or semantic names. When the textbox had an ex-
plicit, concise caption, visible names dominated strongly
(e.g., 31 out of 40 names for Figure 4a were visible). When
the textbox had a wordy caption, users tended to seek a
more concise name (so only 6 out of 40 names for Figure
4b were visible). Even when a caption was missing, how-
ever, the words on the page exerted some effect on users'
naming (so 12 out of 40 names for Figure 4d were visible).

Part 2 found that users could flawlessly find the textbox
associated with a visible name, as long as the name was
unambiguous. When a name was potentially ambiguous,
users tended to resolve the ambiguity by choosing the first
likely match found in a visual scan of the page. When the
ambiguity was caused by both visible matching and seman-
tic matching, however, users tended to prefer the visible
match: given "City" as the target name for Go.com, 36 out
of 40 users chose one of the two textboxes explicitly la-
beled "City"; the remaining 4 users chose the "Zip code"
textbox, a semantic match that appears higher on the page.
The user's visual scan also did not always proceed from top
to bottom; given "First Search" as the target name for
eBay.com, most users picked the search box in the middle
of the page, rather than the search box tucked away in the
upper right corner.

Part 3's names were almost all visible (235 names out of
240), since the directions requested only words from the
page. Even in visible naming, however, users rarely repro-
duced a caption exactly; they would change capitalization,
transpose words (writing "web search" when the caption
read "Search the Web"), and mistype words. Some Part 3
answers also included the type of the page object ("box",
"entry", "field"). When asked to name a textbox which had
an ambiguous caption (e.g. "Search" on a page with more
than one search form), most users noticed the ambiguity
and tried to resolve it with one of two approaches: either
counting occurrences ("search 2") or referring to other
nearby captions, such as section headings ("search prod-
ucts").

(a) (b)

(c) (d)

 Figure 4. Some of the textboxes
used in the web survey.

 9

KEYWORD PATTERN MATCHING ALGORITHM
We now describe the heuristic algorithm that resolves a
keyword pattern to a web page component, such as a text-
box. Given a name and a web page, the output of the algo-
rithm is one of the following: (1) a textbox on the page that
best matches that name; (2) ambiguous match if two or
more textboxes are considered equally good matches; or (3)
no match if no suitable match can be found.

The first step is to identify the text labels in the page that
approximately match the provided name, where a label is a
visible string of content delimited by block-level tags (e.g.
<P>,
, <TD>). Button labels and ALT attributes on
images are also treated as visible labels. Before compari-
son, both the name and the visible labels are normalized by
eliminating capitalization, punctuation, and white space.
Then each label is searched for an approximate occurrence
of the name, using a conventional edit distance algorithm to
tolerate typos and omitted words. Matching labels are
ranked by edit distance, so that closer matches are ranked
higher.

For each matching label, we search the web page for text-
boxes that it might identify. Any textbox that is roughly
aligned with the label (so that extending the textbox area
horizontally or vertically would intersect the label's bound-
ing box) is paired with the label to produce a candidate
(label,textbox) pair.

These pairs are further scored by several heuristics that
measure the degree of association between the label and the
textbox. The first heuristic is pixel distance: if the label is
too far from the textbox, the pair is eliminated from consid-
eration. Currently, we use a vertical threshold of 1.5 times
the height of the textbox, but no horizontal threshold, since
tabular form layouts often create large horizontal gaps be-
tween captions and their textboxes. The second heuristic is
relative position: if the label appears below or to the right
of the textbox, the rank of the pair is decreased, since these
are unusual places for a caption. (We don't completely rule
them out, however, because users sometimes use the label
of a nearby button, such as "Search", to describe a textbox,
and the button may be below or to the right of the textbox.)
The final heuristic is distance in the document tree: each
(label,textbox) pair is scored by the length of the shortest
path through the DOM tree from the label node to the text-
box node. Thus labels and textboxes that are siblings in the
tree have the highest degree of association.

The result is a ranked list of (label, textbox) pairs. The
algorithm returns the textbox of the highest-ranked pair,
unless the top two pairs have the same score, in which case
it returns ambiguous match. If the list of pairs is empty, it
returns no match.

We evaluated this algorithm on the 240 names (40 for each
of 6 pages) generated by Part 3 of the study. Its perform-
ance is shown in Figure 5. For each name, Chickenfoot ei-
ther found the right textbox (Match), reported an ambigu-
ous match (Ambiguous), or returned the wrong textbox
(Mismatch). Precision is high for 5 of the 6 pages. Per-

formance is poor on the MIT page because it involved an
ambiguous caption, and our heuristic algorithm does not yet
recognize the disambiguation strategies used for this cap-
tion (counting and section headings).

This evaluation is only preliminary; a proper evaluation
should use a larger selection of web sites. Nevertheless, it
suggests that keyword patterns can be automatically re-
solved with high precision.

RELATED WORK
Several systems have addressed specific tasks in web auto-
mation and customization, including adding links �[9], build-
ing custom portals �[14], crawling web sites �[15], and mak-
ing multiple alternative queries �[2]. Chickenfoot is a more
general toolkit for web automation and customization,
which can address these tasks and others as well.

One form of general web automation can be found in script-
ing language libraries such as Perl's WWW::Mechanize or
Python's ClientForm. These kinds of scripts run outside the
web browser, where they cannot easily access pages that
require session identifiers, secure logins, cookie state, or
client-side JavaScript to run.

In an attempt to access these “hard-to-reach pages” �[4],
some systems give the user the ability to record macros in
the web browser, where the user records the actions taken
to require access to a particular page, such as filling out
forms and clicking on links. Later, the user can play the
macro back to automate access to the same page. LiveAgent
�[7] takes this approach, recording macros with a proxy that
sits between the user’s browser and the Web. The proxy
augments pages with hidden frames and event handlers to
capture the user’s input, and uses this information to play
back the recording later. Unfortunately, the proxy approach
is also limited – for example, pages viewed over a secure
connection cannot be seen, or automated, by the proxy.
WebVCR �[4] is another macro recorder for web navigation,
which skirts the proxy problem by using a signed Java app-
let to detect page loads and LiveConnect �[8] to instrument
the page with event-capturing JavaScript after the page
loads. Because part of WebVCR runs as an applet inside
the browser, it can record all types of navigation. But nei-
ther LiveAgent nor WebVCR enable the user to modify the
pages being viewed.

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

Yahoo Expedia Amazon MIT Vivisimo Google

Mismatch

Ambiguous

Match`

 Figure 5. Precision of keyword patterns.

 10

Toolkits such as WBI �[5] and Greasemonkey focus on giv-
ing the user the ability to modify pages before, or just after,
they are loaded in the user’s web browser. WBI uses a
proxy to intercept page requests, letting user-authored Java
code mutate either the request or the resulting page. Giving
users the ability to automate pages with Java and all its li-
braries is a powerful tool; however, WBI is still hampered
by the limitations of a proxy.

Though both WBI and Greasemonkey enable the user to
mutate pages, neither of them eliminates the need to inspect
the HTML of the page to mutate it. For example, the sam-
ple scripts on the Greasemonkey site are full of XPath pat-
terns �[11] that identify locations in web pages. These scripts
are difficult to create because they require the author to
plumb through potentially messy HTML to find the XPath,
and they are difficult to maintain because they are not resil-
ient to changes in the web site. Chickenfoot avoids this
problem by giving users a high-level pattern language based
on keyword matching that enables the user to identify pages
without knowledge of the page’s HTML structure, facilitat-
ing development and increasing readability and robustness.
In Chickenfoot, users can fall back on JavaScript to ma-
nipulate a page’s DOM or XPath expressions to select ele-
ments; however, they are not restricted to these tools.

WebL �[1], a programming language for the Web, also fo-
cused on giving users a higher-level language to describe
Web page elements. In WebL, the user provides names of
HTML elements to create piece-sets, where a piece-set is a
set of piece objects, and a piece is a contiguous text region
in a document. WebL provides various methods to combine
piece-sets called operators, including set operators such as
union and intersection, positional operators such as
before and after, and hierarchical operators such as in
and contain. Although these operators help produce more
readable scripts, the language does not eliminate the need to
inspect a web page for the names of its HTML elements, as
the user must provide those to construct the basic pieces on
which the operators work.

Another drawback of WebL, and of most of the aforemen-
tioned tools (with the exception of the macro recorders), is
that they do not allow scripts to be developed inside the
web browser. We consider the ability to experiment with a
web site from the script development environment one of
the greatest advantages of Chickenfoot – the user does not
have to wait to see how it will affect the appearance of the
web page, because Chickenfoot gives immediate feedback
on the rendered page. LAPIS �[10], a predecessor of Chick-
enfoot, took a similar approach, giving the user an interac-
tive environment in which to experiment with pattern
matching and web automation. Unfortunately, the LAPIS
web browser does not support web standards like
JavaScript, cookies, and secure connections, so it fails to
provide the user with a complete web experience.

CONCLUSION, STATUS, AND FUTURE WORK
Chickenfoot is a programming system for web automation,
integrated into the Firefox web browser. Chickenfoot en-

ables the user to customize and automate web pages without
inspecting their source, using keyword pattern matching to
name page components. We showed that keyword patterns
correspond closely to the names users actually generate for
page components, and we presented a heuristic algorithm
that implements keyword matching. Future work includes
more demonstrational programming (such as the Actions
pane) and techniques for detecting changes to web applica-
tions that break Chickenfoot scripts and helping the user fix
them. We are also working to unify the two kinds of pat-
tern matching (keywords and text constraints), to make the
language simpler and more uniform.

Chickenfoot is under active development. The latest version
is available at www.bolinfest.com/chickenfoot.

ACKNOWLEDGMENTS
We thank all the users who participated in our web study, as
well as Maya Dobuzhskaya, Vineet Sinha, ChongMeng
Chow, David Huynh, Marcos Ojeda, and other members of
the UID group who provided valuable feedback on the
ideas in this paper. This work was supported in part by the
National Science Foundation under award number IIS-
0447800. Any opinions, findings, conclusions or recom-
mendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

REFERENCES
[1] Kistler, T. and Marais, H. "WebL – a programming language for the

Web." Proc. WWW7, 1998, pp. 259–270.
[2] Fujima, J., Lunzer, A., Hornbæk, K., Tanaka, Y. “Clip, connect,

clone: combining application elements to build custom interfaces for
information access.” Proc. UIST 2004, pp. 175–184.

[3] DiGiano, C. and Eisenberg, M. “Self-disclosing design tools: a
gentle introduction to end-user programming.” Proc. DIS ’95, pp.
189–197.

[4] Anupam, V., Freire, J., Kumar, B., and Lieuwen, D. “Automating
web navigation with the WebVCR.” Proc. WWW9, 2000, pp 503–
517.

[5] Barrett, R., Maglio, P., and Kellem, D.. “How to Personalize the
Web.” Proc. CHI, 1997, pp. 75–82.

[6] Ekiwi, LLC. “Screen-scraper: solutions for web data extraction. ”
www.screen-scraper.com/

[7] Krulwich, B. “Automating the Internet: Agents as User Surrogates.”
IEEE Internet Computing, v1 n4 (July/August 1997), pp. 34–38.

[8] Flanagan, D. JavaScript: The Definitive Guide. O’Reilly, 2001.
[9] Microsoft. “Smart Tags and Smart Documents.”

msdn.microsoft.com/office/understanding/smarttags/default.aspx
[10] Miller, R.C. and Myers, B.A. “Integrating a Command Shell into a

Web Browser.” Proc. USENIX, 2000, pp. 171–182.
[11] W3C. “XML Path language (XPath) Version 1.0,” 1999.
[12] W3C. “Document Object Model (DOM).” ww.w3.org/DOM/.
[13] Garrett, J. “Ajax: A New Approach to Web Applications.”

www.adaptivepath.com/publications/essays/archives/000385.php
[14] Sugiura, A. and Koseki, Y. “Internet Scrapbook: Automating web

browsing tasks by demonstration.” Proc. UIST ’98, pp. 9–18.
[15] Miller, R.C. and Bharat, K. “SPHINX: a Framework for Creating

Personal, Site-Specific Web Crawlers.” Proc. WWW7, 1998, pp.
119–130.

